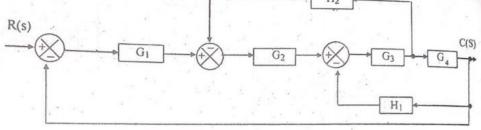


Write the differential equations governing the mechanical rotational system shown in the figure and find transfer function.

QUESTION BANK 2021-22 ĸ 500 Js Bu Q.4 Compare open loop and closed loop control systems based on different [L4][CO1] [8M aspects? a. [L4][CO1][4M] Distinguish between Block diagram Reduction Technique and Signal Flow Graph? b. Q.5 Using Block diagram reduction technique find the Transfer Function of the [L1][CO1] 12M system. G H. **Q.6** For the system represented in the given figure, obtain transfer function [L1][CO1] 12M C(S)/R(S). H₂



Q.7 a. Give the block diagram reduction rules to find the transfer function of the [L4][C01] 8M system

[L4][CO1] 4M List the properties of signal flow graph. b. Q.8 Find the overall transfer function of the system whose signal flow graph is [L1][CO1] 12M shown below R(s) G₂ G3 G, 1 Fig 1 G, Q.9 Obtain the overall gain C(S)/R(S) from signal flow graph shown in [L1][CO1] 12M -H3 Fig 1 Q.10 [L1][CO1] 12M Convert the block diagram to signal flow graph and determine the transfer function C(S)/R(S). G, C(s G Fig 1 н

QUESTION BANK 2021-22

Page 3

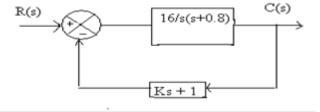
UNIT-II

TIME DOMAIN ANALYSIS

- **Q.1** List out the time domain specifications and derive the expressions for Rise [L1,CO2] 12M time, Peak time and Peak overshoot.
- **Q.2** Find all the time domain specifications for a unity feedback control system [L1,CO2] 12M whose open loop transfer function is given by $G(S) = \frac{25}{S(S+5)}$.
- Q.3 A closed loop servo is represented by the differential equation: $\frac{d^2c}{dt^2} + 8\frac{dc}{dt} = [L5,CO2]$ 12M 64e. Where 'c' is the displacement of the output shaft, 'r' is the displacement of the input shaft and e =r - c. Determine undamped natural frequency, damping ratio and percentage maximum overshoot for unit step input.
- Q.4 a. Measurements conducted on a servo mechanism, show the system response [L5,CO2] 6M to be c(t) = 1+0.2e^{-60t}- 1.2e^{-10t} When subject to a unit step input. Obtain an expression for closed loop transfer function, determine the undamped natural frequency, damping ratio?
 - b. For servo mechanisms with open loop transfer function given below what [L1,CO2] 6M type of input signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{10}{s^2(s+1)(s+2)}.$$

- Q.5 A unity feedback control system has an open loop transfer function, G(s) = [L1,CO2] 12M $\frac{10}{s(s+2)}$. Find the rise time, percentage overshoot, peak time and settling time for a step input of 12 units.
- Q.6 Define steady state error? Derive the static error components for Type 0, [L1,CO2] 12M Type 1 &Type 2 systems?
- **Q.7** A positional control system with velocity feedback shown in figure. What is [L5,CO2] 12M the response c(t) to the unit step input. Given that damping ratio=0.5.Also determine rise time, peak time, maximum overshoot and settling time.



Q.8 a. A For servo mechanisms with open loop transfer function given below what [L3,CO2] 6M type of input signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{20(S+2)}{S(S+1)(S+3)}$$

b. Consider a unity feedback system with a closed loop transfer function $\frac{C(S)}{R(S)}$ [L1,CO2] 6M $\frac{KS+b}{(S^2+aS+b)}$. Calculate open loop transfer function G(s). Show that steady state

 (S^2+aS+b) . Calculate open loop transfer function G(s). Show that steady state error with unit ramp input is given by $\frac{(a-K)}{b}$

For a unity feedback control system the open loop transfer function

Q.9

$$G(S) = \frac{10(S+2)}{S^2(S+1)}$$
.

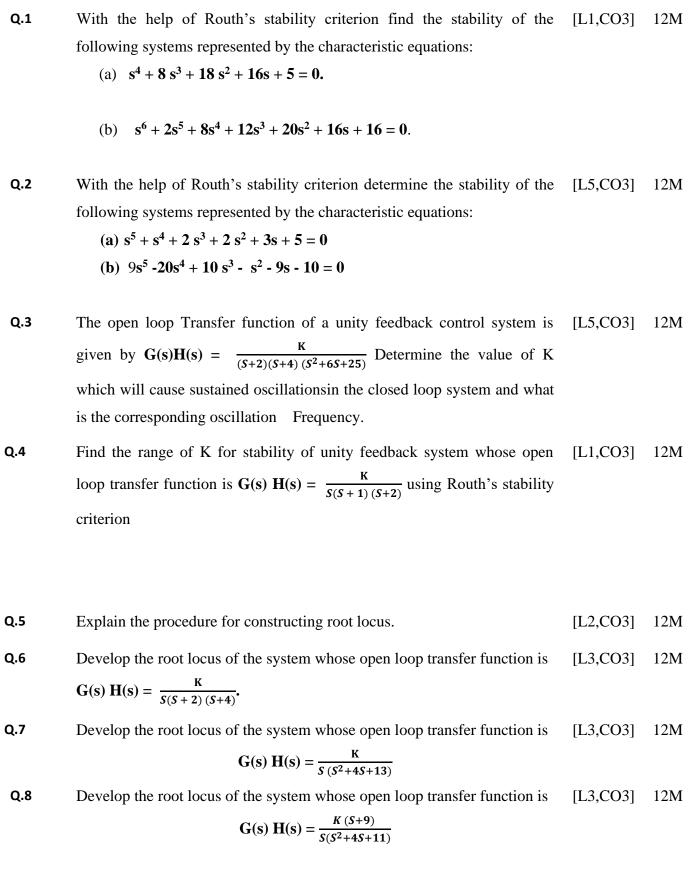
(i) Determine the position, velocity and acceleration error constants. [L5,CO2] 6M

(ii) The steady state error when the input is $\mathbf{R}(\mathbf{S}) = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$. [L1,CO2] 6M

- **Q.10** a. What is the characteristic equation? List the significance of characteristic [L1,CO2] 4M equation.
 - b. The system has $G(s) = \frac{K}{S(1+ST)}$ with unity feedback where K & T are constant. [L5,CO2] 8M Determine the factor by which gain 'K' should be multiplied to reduce the overshot from 75% to 25%?

<u>UNIT –III</u>

STABILITY ANALYSIS



QUESTION BANK 2021-22 Q.9 Develop the root locus of the system whose open loop transfer function is [L3,CO3] 12M $G(s) H(s) = \frac{K(S^2+6S+25)}{S(S+1)(S+2)}$

Q.10 Develop the root locus of the system whose open loop transfer function is [L3,CO3] 12M

$$G(s)H(s) = \frac{K}{S(S^2+6S+10)}$$

UNIT-IV

FREQUENCY DOMAIN ANALYSIS

Q.1		Develop the Bode plot for the following transfer function	[L3,CO4]	12M		
		$G(s)H(s) = \frac{K e^{-0.1s}}{S(s+1) (1+0.1s)}$				
Q.2		Develop the Bode plot for the system having the following transfer	[L3,CO4]	12M		
		function				
		$G(s) = \frac{15 (S+5)}{S(S^2 + 16S + 100)}$				
Q.3	a.	Define and derive the expression for resonant frequency.	[L1,CO4]	6M		
	b.	Develop the magnitude bode plot for the system having the following	[L3,CO4]	6M		
		transfer function: $G(s) H(s) = \frac{2000 (S+1)}{S(S+10) (S+40)}$				
Q.4		Derive the expressions for resonant peak and resonant frequency and	[L3,CO4]	12M		
		hence establish the correlation between time response and frequency				
		response.				
Q.5		Develop the Bode plot for the following Transfer Function $G(s) H(s) =$	[L3,CO4]	12M		
		$\frac{20(0.1S+1)}{S^2(0.2S+1)(0.02S+1)}$				
		From the bode plot determine (a) Gain Margin (b) Phase Margin (c)				
		Comment on the stability				
Q.6	a.	Define and derive the expression for resonant frequency	[L1,CO4]	6M		
	b.	Given $\xi = 0.7$ and $\omega_n = 10$ rad/sec. Find resonant peak, resonant frequency and bandwidth.	[L5,CO4]	6M		
Q.7		Sketch the polar plot for the open loop transfer function of a unity feedback system	is [L5 CO4]	12M		
		by $G(s) = \frac{1}{S(1+S)(1+2S)}$. Determine Gain Margin & Phase Margin.				
Q.8		Sketch the polar plot for the open loop transfer function of a unity feedback system is	given CO4]	12M		
		by $G(s) = \frac{1}{s^2(1+s)(1+2s)}$. Determine Gain Margin & Phase Margin.				
Q.9		Draw the Nyquist plot for the system whose open loop transfer function is,	[L5,CO4]	12M		
	$G(s)H(s) = \frac{K}{S(S+2)(S+10)}$. Determine the range of K for which closed loop system is stable.					
Q.10		Obtain the transfer function of Lead Compensator, draw pole-zero plot and w procedure for design of Lead Compensator using Bode plot.	rite (he O4]	12M		

<u>UNIT-V</u> <u>STATE SPACE ANALYSIS</u>

Q.1		Determine the Solution for Homogeneous and Non homogeneous State	[L5,CO5]	12M
Q.2		equations For the state equation: $\dot{X} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbf{U}$ with the unit step input	[L3,CO5]	12M
		and the initial conditions are $X(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Solve the following (a) State transition matrix		
		(b) Solution of the state equation.		
Q.3		A system is characterized by the following state space equations:		
		 X 1 = -3 x1 + x2; X 2 = -2 x1 + u; Y = x1 (a) Find the transfer function of the system and Stability of the system. 		
		(b) Compute the STM	[L5,CO5]	12M
Q.4	a.	What are the properties of State Transition Matrix.	[L1,CO5]	4M
	b.	Diagonalize the following system matrix A = $\begin{pmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{pmatrix}$	[L3,CO5]	8M
Q.5		A state model of a system is given as:	[L2,CO5]	12M
		$ \overset{\bullet}{X} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} X + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U \text{ and } Y = (1 \ 0 \ 0) X $		
		Determine: (i) The Eigen Values. (ii) The State Transition Matrix.		
Q.6	a.	Find a state model for the system whose Transfer function is given by $\mathbf{G(s)} \ \mathbf{H(s)} = \frac{(7S^2 + 12S + 8)}{(S^3 + 6S^2 + 11S + 9)}$	[L3,CO5]	6M
		Find the state model of the differential equation is	[L3,CO5]	6M
	b.	y + 2y + 3y + 4y = u	[L3,C05]	UNI
Q.7		Diagonalize the following system matrix A = $\begin{pmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$	[L1,CO5]	12M
CON	TR	OL SYSTEMS	Page)

		QUESTION	BANK 202	1-22
Q.8	a.	Explain the properties of STM.	[L2,CO5]	4M
	b.	For the state equation: $\dot{X} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbf{U}$ when, $\mathbf{X}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.	[L1,CO5]	8M
		Find the solution of the state equation for the unit step input.		
Q.9		Diagonalize the following system matrix A = $\begin{pmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{pmatrix}$	[L1,CO5]	12M
Q.10	a.	Define state, state variable, state equation.	[L1,CO5]	6M
	b.	Derive the expression for the transfer function from the state model.	[L3,CO5]	6M
		$\overset{\bullet}{X} = Ax + Bu \text{ and } y = Cx + Du$		

Prepared by: **P NANDHINI**